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1

Let J,WW e R2N*2N pe two matrices such that

is nonsingular and skew-symmetric matrix. We say
that the matrixiV is J-symplectic (or.J-orthogonal
yif WIJW = J. These types of matrices (so-
called structured) usually appear in control theory
[15, 12, 11, 1]: more precisely in optimal control [11]
and in the parametric resonance theory [10, 15]. In

Introduction

is J-symplectic [2, 7, 3, 15] and satisfies the relation-
shipX(t+nP)= X(t)X"(P),Vt € RandVn € N.
The solution of the system evaluated at the period
is called the monodromy matrix of the system. The
eigenvalues of this monodromy matrix are called the
multipliers of the system (2). The following defini-
tion permits to classify the multiplies of Hamiltonian
system

these areas, these types of matrices are obtained asDefinition 1 Let p be a semi-simple multiplier of (2)

solutions of Hamiltonian systems with periodic coeffi-
cients. About these systems, that are differential equa-
tions with P-periodic coefficients of the below form

dX(t)

Jdt

= HH)X(t), teR 1)

whereJT = —J, (H(t)T = H(t) = H(t + P).
The fundamental solutioX (¢) of (1) i.e. the matrix
satisfying

dX(t) .
{J — HOX(t), teRy (o
X(0) = Dy
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lying on the unit circle. Thepis called a multiplier of

the first (second ) kind if the quadratic forvz, x) is
positive (negative) on the eigenspace associated with
p . When(Jz,z) = 0, thenp is of mixed kind.

In this definition, the notatiofiiJz, x) stands for the
Euclidean scalar product and= /—1.

This other definition proposed by S. K. Godunov
[4, 5, 8, 9] gives another classification of the multipli-
ers of (2)

Definition 2 Let p be a semi-simple multiplier of (2)
lying on the unit circle. We say that is of the red
(green) color or in short--multiplier ( g-multiplier)
if (Soxz,x) > 0 ( respectively(Spz,z) < 0 )
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on the eigenspace associated wjthwhere S,
(1/2) (JX(P)T + (JX(P))). If (Sow,z) =0, we
say thatp is of mixed color.

From Definition 2, Dosso and Sadkane obtained a
result of strong stability of symplectic matrix (see
[2, 6, 4])

Theorem 3 A symplectic matrix is strong stability if
and only if

1. all eigenvalues are on the unit circle ;

2. the eigenvalues are either red color or green

color ;

the eigenvalues are well separated.

Denote byP, andP, the spectral projectors as-
sociated with ther—eigenvalues and—eigenvalues
of the monodromy matrixX (P) of (2) and let's
put S, PTSoP, ST > 0 and
Sy = PISP, ST < 0 where 5, =
(1/2) ((X(P)J) + (X(P)J)"). We give the follow-
ing theorem which gathers all assertions on the strong
stability of Hamiltonian systems with periodic coeffi-
cients [15, 6, 2].

Theorem 4 The Hamiltonian system (2) is strongly
stable if one of the following conditions is satisfied :

1. If there exists > 0 such that any Hamiltonian
system withP-periodic coefficients of the form

delit) = H(t)z(t) and satisfying

~ T ~
W%JMEAHHw—wahw

is stable.

The monodromy matrid/ = X (P) of the sys-
tem (2) is strongly stable

. (KGL criterion) the multipliers of the system (2)
are either of the first kind and either of second
kind. The multipliers of the first kind and sec-
ond kind of the monodromy matrix should be well
separated i.e. the quantity

Sar(X(P)) = min {|e — e ; ¢ i
3)

are multipliers of(2) of different kinds}

should not be close to zero.
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4. the multipliers of the system (2) are either of the
red color and either of the green color. The r-
multipliers and g-multipliers of the monodromy
matrix should be well separated i.e. the quantity

0s(X(P)) = min {|ei€’c — ei9l| ek i

are r—multpliers andg—multipliers of (2)}

4)
should not be close to zero.
5.5.>20,5,<0andS, -S; >0
6. P, + P, = I andP! 5P, = 0.

The paper is organized as follows. In Section

. the subspaces associated of these deux groups of we give some preliminaries and useful results to

introduce the rank one perturbations of Hamiltonian
systems with periodic coefficients. More specifically,
this section explains what led us to rank one pertur-
bations of Hamiltonian system with periodic coeffi-
cients. Section 3 explains the concept of rank one per-
turbation of Hamiltonian systems with coefficients. In
Section 4 we analyze the consequences of strongly
stable of Hamiltonian systems with periodic coeffi-
cients on its rank on perturbation. Section 5 is devoted
to numerical tests. Finally some concluding remarks
are summarized in Section 6

Throughout this paper, we denoted the identity
and zero matrices of ordérby I, and0,, respectively
or just I and0 whenever it is clear from the context.
The 2-norm of a matrix4 is denoted byj|A||. The
transpose of a matrix (or vectof)) is denoted by/”".

2 Rank one perturbation of sym-
plectic matrices depending on a pa-
rameter

Let W € R2N*2N pe aJ-symplectic matrix where
J € R2Vx2N s skew-symmetric matrix (i.eJ”
—J)[13, 14].

Definition 5 We call a rank one perturbation of the

symplectic matrixit’ any matrix of the formV =
(I +uu” J)W whereu € RV,

We recall in the following proposition some properties
of rank one perturbations of symplectic matrices (see
[16]).

Proposition 6 LetW be a.J-sympectic matrix.
1. Any rank one perturbation & is J-symplectic.

2. The invertible of a rank one perturbatioh +
wu®' J of identity matrix/ is the matrix/ —uu’ J.
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Proof: See [13, 16] for the proof. O

Letu be a vector oR2V. Consider the following
lemma

Lemma 7 Consider the rank one perturbatiorﬁz’/ =
(I+uu® J)W of the J-symplectic matrix}’. Then for
anyy € R?V, the quadratic form(Spy, y) is defined

by

(Soy,y) = (Soy. ) — ¢(y) (5)

where
So=(1/2) (W) + (JW)T)

and
e(y) = (1/2) ((Juu" JW) + (Juu" JW) )y, y) .
Proof: DevelopingS,, we have

So =(1/2) (JW) + (JW)T) +
(1/2) [(Juu® JW) + (Juu® JW)T] .

we deduct

(Soys ) = (Soy, y)+
(1/2) ([(Juu® TW) + (Juu® TW)T] y,y)

¥

(
= (Soy,y) + ¢(

Y)

O

Corollary 8 Letp be an eigenvalue d of modulus
1 andy an eigenvector associated with Thenp is
an eigenvalue of red color (respectively eigenvalue of

green) if and only if(goy,y) > ¢(y) (respectively

<§oy,y) < p(y))-
However if<§0y, y) = ¢(y), thenp is of mixed color.

Proof: According to lemma 7, we get

(Soysy) = (Soy.y) — @(y)
From Definition 2, we have

e if pis an eigenvalue of red color,
(Soy,y) > 0= (Soy,y) > @(y) ;
e if pis an eigenvalue of green color,

(Soy,y) < 0= (Soy,y) < @(y) ;
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e if pis an eigenvalue of mixed color,
(Soy,y) = 0= (Soy,y) = ¢(y).

O

We consider the following rank one perturbation
of the fundamental solutioX (¢) of (2)

X(t) = (I +uu”)X(t) (6)

then we have the following lemma

Lemma9 If X (t) is a J-symplectic matrix function

such that rankX (£) — X (t)) = 1, V¢ > 0, then there
is a vector function(t) € C*¥ V¢t > 0 such that

X(t) =T +u®)u®)TNHX(), VteR

Conversely, for any vecton(t) € C2V, the matrix
function X (¢) is J-symplectic.

Proof: According to Lemma 7.1 of [13, Section 7,p.
18], for all t > 0, there exists a vectar(t) € C2V
such that

X(t) = (I +u®)u®)T )X ().

Moreover, if X (t) is .J-symplectic, X (¢) is also J-
symplectic. O

This Lemma leads us to introduce the concept of
rank one perturbation of Hamiltonian systems with
periodic coefficients.

Now consider, in the follow, that the vector func-
tion is a vector constant. We give the following the-
orem which extend Theorem 7.2 of [13, Section 7, p.
19] to matrizant of system (2).

Theorem 10 Let J € C?N*2N pe skew-symmetric
and nonsingular matrix,( X (¢));~o fondamental so-
lution of system (2) and(¢t) € C an eigenvalue of
X(t) forall t > 0. Assume thak (¢) has the Jordan
canonical form

Iy l2 bm(t)
(@ Tny <A(t>)) @(@ anu(t))) @»-@( P Jn,m(t)u(t))) eI(1),
j=1 j=1 j=1

wheren; > -+ > n,,p With m R — N*

a function of index such that the algebraic multiplici-
tiesisa(t) = ling + -+ + lm(t)nm(t) and J (t) with
a(J(t)) € C\ {A(t)} contains all Jordan blocks as-
sociated with eigenvalues different frohgt). Fur-
thermore, letu € C* and B(t) = uvu® JX ().
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(1) IfVt > 0, A(t) & {—1, 1}, then generically with we considered the integets andn;, constantvk €
respect to the componentswgfthe matrixX (¢)+ {1,...,m(t)} for an indexm(t) given. Whent = 0,
B(t) has the Jordan canonical form A(0) = 1 with m(0) = 2N andl, = 1, Vk. All

Jordan blocks are reduced1o

11—1 12
( @ Jn1<A(t))> ® (@ Jn2<A(t))> O

j=1 j=1

(lmm ) i 3 Rank one perturbations of Hamil-
D Ty eI®., O . . . .
#=t tonian system with periodic coeffi-
where 7 (t) contains all the Jordan blocks of cients

t
X(t) + B(t) associated with eigenvalues differ-
t

2N
ent fromA(t). Let u be a constant vector aR“". (X (¢)):c>0 the

fundamental solution of system 2. We have the fol-

(2) If 3tg > 0, verifying A(tg) € {+1, 1}, we have lowing proposition
(2a) if ny is even, then generically with respect Proposition 11 Consider the perturbed Hamiltonian
to the components af, the matrix system
X(to) + B(tp) has the Jordan canonical ~
form dX(t >
sZ0 e X @®
(;@1 ymwto))) o (JQE y@wto))) & B Where
( E](at) Tt (A(to))) ® J(to), E(t) = (Juu” H(t)T +Juu” H(t)+(uu” )T H(t) (uu’ J).

ThenX (t) = (I +uu”.J)X (t) is a solution of system
where J(t) contains all the Jordan of (8).

X(t B(t) associated with eigenvalues ~
dif(fe)retlt frE)r)n)\(t). g Proof: By derivation ofX (¢), we obtain :

) Cally with respect to the componenen o) (14w 1)1y

the matrix X () + B(tp) has the Jordan dt T 71 dt

canonical form =J(I +uu” J)J " H(H) X (),

according from system (2)
—=[H(t) + Juu? H(t)] X (t)
=[H(t) + Juu" H®)|(I + uu” J) " X (2)

(l’éé” Tty (A(tg))) ® F(to), =[H(t) + Juu H®))(I — uuTJ))N((t)
- because(! + uul J)™t = (I —uu’J) (see [16)
where J(to) contains all the blocks of [H(t) = H(t)uu"J + Juu" H(t)—

X (to) + B(to) associated with eigenvalues Juu” H(t)uu” J] X (t)
different from\(¢y).

-2
=1

1
Tnqi+1(A(t0)) & ( b Jn,l(k(to))) -0

=) + JuuTHE)T + Jun H @) + (wuT )T H @) (uuT 7| X(2)

Proof: Forallt > 0, if A(t) € {—1,1}, we have the
decomposition(7) according to [13, Theorem 7.2]).
Other hand, the number of Jordan blocks depend on Hence the following perturbed Hamiltonian equa-
the variation oft. Thus, this number is a function of  tion (8) where

indexm : RT — N*.

B(t)

For the other two point§2a) and (2b), they show in E(t) =(Juu"H(t))" + Juu H(t)+

the same way that items (2) and (3) of Theorem 7.2 of (wu )T H(t)(wu” ) (9)

[13, Theorem 7.2]) sinc& (ty) + B(to) is a constant

matrix. O O
In reality, the integerdy,...,1,,(t) and indexes We note thatE(t) is symmetric andP-periodic

ni,...,nm(t) ae not constant when t varies. The ie. E(t)! = E(t) and E(t + P) = E(t) for all
number of Jordan blocks and their sizes can varied t €> 0. The following corollary gives us a simplified
in function of the variation of t. In Theorem 10, form of system (8)
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Corollary 12 The system (8) can be put at the form

J@ = (I —uwT NTH@)I —udT J)X (1),
X(0) = I+uwTJ

(10)

Proof. Indeed, developing

(I —uu® J)TH(t)(I — vu®J) and we get

(I —uwu NTHE)T —wu®J) = H(t)+

(JTuu H)T + T uu H(t) + (wu? J)TH () (uwu® J)

E(t)

and X (0) = (I + uu J)X(0) = I + uuTJ.
We give the following corollary

Corollary 13 Let (X(t)):>0 be the fundamental so-
lution of system (2).

All solution X (t) of perturbed system (10) of system
(2), is of the formX (¢) = (I + uuT J)X(t).

Proof: From Proposition 8 ifX(¢) is a solution de
(2), the perturbed matrid/ (t) = (I +uu® J)X(t) is

a solution of (10). N

Reciprocally, for any solutioX (¢) de(10), Let’s put

X(t)

(I —uu” )X (t)

whereuw is the vector defined in system (10)

— X(t) = (I +uu”J)X(t)

because + uu’J) is inverse of the matrix
(I —wu”J) (see [16]). By replacing this expression
X (t) in (10), we obtain

J(I + uuTJ)iX(t) = —wt TH@H)X ()

dt

J(I + uuTJ)%X(t) = —wt NTHH)X ()

(I —uu® D)7 J(I + uuTJ)%X(t) =H(t)X(t)

(I +uu” DT I 4 wu™J) %X(t) =H(t)X (t)
=J

J%X(t) =H(t)X (t)

and X (0) = (I — uwuTJ)X(0) = (I — wuTJ)(I +
uu®.J) = I. ConsequentlyX (t) is solution of (2).0

From the foregoing, we give the following defini-
tion :
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Definition 14 We call rank one perturbations of
Hamiltonian system with periodic coefficients, any
perturbation of the form (10) of (2).

Consider the following canonical perturbed system
taking Ioy att = 0.

degt(t) (I — waT JYTH ()T — T J)W (1),
W) = I

(11)

4 Consequence of the strong stabil-
ity on rank one perturbations

We give the following proposition which is a conse-
guent of Corollary 8

Proposition 15 If a symplectic matriXV" is strongly
stable, then there exists a positif constarguch that
any vectoru € R2V verifying |[uu” JW| < 6, we

have <§0y,y> + ¢(y) for any eigenvector of W
whereS, = (1/2) ((JW/) + (JW/)) with W = (I +
uul)W.

Proof: The strong stability of symplectic matri¥”
implies that the eigenvalues &% are either of red
color either of green color i.e. for any eigenvector
of W, we have

(Soy,y) # 0= (Soy,y) # ©(y)

using Corollary 8. O

This following Proposition gives us another con-
sequence of the strong stability Bf under small per-
turbation that preserve symplecticity.

Proposition 16 If a symplectic matri¥4” is strongly
stable, then there exists a positif constarguch that
any vectoru € RV verifies||uu” JW || < 4, we have

W = (I + uu'J)W is stable.

Proof: If W is strongly stable, then there exists
a positif constanty such that any small perturba-

tion W of W preserving its symplecticity verifying
|W — W|| < 6, is stable. In particulary, if the pertur-

bation is a rank one perturbation with of the form
W +uu® JW, any vector verifying ||uu® JW || < 6

givesW stable. O

Hence we have this following result on the strong
stability of the Hamiltonian systems with periodic co-
efficients
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Proposition 17 If Hamiltonian system with periodic
coefficients (2) is strongly stable, then there exists
0 such that for any vectou verifying

IE@I < e

where E(t) is defined in (9), rank one perturbation
Hamiltonian system (10) associated is stable.

Proof: This proposition is a consequence of Theorem
4 using system (8) of Proposition 11. O

On the other hand, if the unperturbed system is
unstable, there exits a neighborhood in which any rank
one perturbation of system (2) remains unstable.

Remark 18 The stability of any small rank one per-
turbation of a Hamiltonian system with periodic co-
efficients doesn’t imply its strong stability because we
are in a particular case of the perturbation of the sys-
tem. However it can permit to study the behavior of
multipliers of Hamiltonian systems with periodic co-
efficients.

5 Numerical examples

Example 19 Consider the Mathieu equation

d?y(t)
a2

wherea, b € R (see [15, vol. 2, p. 412],[4]). Putting
0 -1
( bsin2t+a 0

H(t) Fret).

we obtain the following canonical Hamiltonian Equa-
tion

= (a + bsin(2t))y(t) (12)

Yy
dy
dt
and

Vt e R, X(0) = I,, (13)

where the matrix{ (¢) is Hamiltonian andr-periodic.
Letu € R?NV*2N pe a random vector in a neighbor-
hood of the zero vector. Consider perturbed system
(10) of (13). We show that the rank one perturbation
of the fundamental solution is a solution of perturbed
system (10). Consider

Y(t) = | X1 () — Xa(t)]],
where X, (t) = (I — uuJ)X(t) and (Xo(t))se>0

is the solution of system (10). We show by numerical
examples thafy(t)) < 1.5 107, vt € [0,7].

vVt >0

E-ISSN: 2224-2880
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For a = 7 andb = 4, consider the vecton =
0.8913
0.7621
vector u which permits to disrupt system (13) by
the vectorsu, 10~ 1w, 102w and 10~ 3u. In this
first figure, we note that () < 1.5 10~4. This
shows thatX; (t) = X»(¢t) for all ¢t € [0, 7] i.e.
the rank one perturbationf X (¢)):cjo - Of the
fundamental solution of system (13) is equal to
the solution(X5(t)) 0. Of rank one perturba-
tion system (10).

). In Figure 1, we consider a random

x10™*  a=7and b=4 with u x 10 a=7 and b=4 with 10 'u

BT s
— y=1510" — y=1510"*
3
52
N 1
A o
o 1 2 3 () 1 2 3
ttimes ttimes
Y107 @a=7and b=4 with 102u x 10 @a=7 and b=4 with 10y
4
BT B0}
— y=1.510"% — y=1510"
3
g2
1
o

o] 1 2 3 0 1 2 3
ttimes ttimes

Figure 1: Comparison of two solutions

However, unperturbed system (13) is strongly
stable. We remark that the rank one perturbed
systems (10) of (13) is strongly stable when the
vectoru € {u,107u,107%,107%}. Therefore
they are stable. This justifies Proposition (17)

For a = 16.1916618724166685... andb = 5,

consider the vector, = 0.4565 ) In this

0.0185
another example illustrated by Figure 2, we con-
sider a random vector u which permits to dis-
rupt system (13) by the vectors 10~ u, 10~2u
and 10~ 3u. In figure 2, we note that)(t) <
1.5 1014, This shows thaf(; (¢) = X,(¢) for
all t € [0, 7).

In this example, the unperturbed system being un-

stable, the rank one perturbation system is unstable
when the vector, € {u,107u, 10724, 1072}, This
justifies the existence of a neighborhood of the unper-
turbed system in which any rank one perturbation of
the system is unstable.

Example 20 Consider the system of differential
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© 10 a=16.191... and b=5 with u X 107%4=16.191... and b=5 with 10 'u

BT ()
— y=15107 — y=1510"
3 3
g2 g2
1 1 s
W/ "'\/ﬁ
0 ot A e v
0 1 2 3 () 1 2 3
ttimes ttimes
WX 1074=16.191... and b=5 with 10 %u WX 1074=16.191... and b=5 with 10"%u
BT c W)
— y=1510* — y=1510"*
3 3
g2 52
t W . N
0
1 2 3

0 1 2 3

ttimes ttimes

Figure 2: Comparison of two solutions

equations ( see [9] and [15, Vil. 2, p. 412])

d2n1
1 +pim + [any cos 29t + (bcos 27t + csin 29t)n3] = 0
d%ng
5 T P2n2 + gngsin 5yt =0,
t

q2

qg%ﬂ%§4+p3n34—ﬁbcos2wt47csh)27ﬂﬂl‘%9n2sh)5wﬂ =o,
(14)
which can be reduced on the following canonical
Hamiltonian system

dX(t
% —H({), X0)=1I, (15)
where
n ~1I
~(3) )
dt 3 3
_( P() 03
mo = (0P,
o
v
2
withyp = | vz | and
etas
a3
p1 + acos 29t o bcos 27 2vt + csin 2+t
e : 2 St
bcos 274 2+t + csin 24t gsin 5+t p3
V3293 on

V4143

q3

Letu € R?YN be a random vector in a neighbor-
hood of the zero vector. Consider perturbed system
(10) of (15). We show that the rank one perturbation
of the fundamental solution of 15 is a solution of its
rank one perturbation system. Consider

b(t) = IX1 (1) — Xo(t)|, V¢ € R
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where X1 (t) = (I — uu® J)X(t) and (Xa(t))ser IS

the solution of the rank one perturbation Hamiltonian
system (10) of (15). Figures 3 and 4 represent the
norm of the difference betweefy et X5.

e fore =15.5andd = 1, Let’s take

0.8214
0.4447
0.6154
0.7919
0.9218
0.7382

tained for values of the vector u taken in
{u,10714,107%u,1073u}. In figure 3, we
note thatwy)(t) < 5 107!3. This shows that
X1(t) = Xy(t) forall ¢ € [0, ] i.e. the rank one
perturbation ()N(l(t))te[om] of the fundamental
solution of system (15) is equal to the solution

(Xg(t))te[om] of the rank one perturbation
system of (15).

U Figure 3 is ob-

x 10 €=15.5and 5=1 withu x 10°*% €=15.5 and 3=1 with 107

WO WO
5 — y=510"1 5 — y=2510%
4 i 4
= 3 s
53 f i‘ 53
2 / s V‘ﬂ 2 ’\\
: J_"‘/ ' +
o o ‘m =3
0 1 2 3 o 1 2 3
ttimes ttimes
x 107 £=15.5 and &=1 with 10 2u % 107 £=15.5 and &=1 with 10 °u
U] V]
5 — y=2510"% 5 — y=2510"%
4 4
53 E
2 . /*w 2 . /'w
v v
0 0
0 1 2 3 o 1 2 3

ttimes ttimes

Figure 3: Comparison of two solutions

However, unperturbed system (15) is strongly
stable. We also note that the rank one perturbed
systems (10) of (15) is strongly stable when the
vectoru € {u,10™'u, 10724, 107 }. Therefore
they are stable. This justifies Proposition (17)

0.0272
0.3127
0.0129
0.3840
0.6831
0.0928

The following figures is obtained for values of the
vector u taken in{u, 10~ u, 1024, 10 3u}. In
figure 4, we also note that(t) < 2 10713, This
shows thatX (¢) = X, (¢) for all t € [0, 7].

In this latter example, the unperturbed system
is unstable and the rank one perturbation sys-
tems remain unstable when the vector €
{u,107 1w, 10724, 107 }. This justifies the exis-
tence of a neighborhood of the unperturbed sys-

e ¢ = 15andd = 2, Let's takeu =
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x10° 2 €=15 and &=2 with u x 107 €=15and =2 with 107

BTE) L (9]
5 — yp10 2.5 — y=210"2
4 2
g3 g1s5
2 1 R
™ i\j‘“"
1 F 3 05 _,ﬁ‘ =
0 0
0 1 2 3 0 1 2 3
ttimes ttimes
x 107 =15 and =2 with 10 °u X107 =15 and &=2 with 10 %u
) BT
2.5 — y=21073 2.5 — y=210"%
2 2
g 15 g 15
1 1
0s A e 05 A e
0 o

ttimes ttimes

Figure 4. Comparisons of two solutions

tem in which any rank one perturbation of the
system is unstable.

6 Conclusion

From a theory developed by C. Mehl, et al., on the
rank one perturbation of symplectic matrices (see
[13]), we defined the rank one perturbation of Hamil-
tonian system of periodic coefficients. After an adap-
tation of some results of [13] on symplectic matrices

when they depend on a time parameter, we show that

the rank one perturbation of the fundamental solution
of a Hamiltonian system with periodic coefficients is
solution of the rank one perturbation of the system.
A result of this theory, we give a consequence of the
strong stability on a small rank one perturbation of

these Hamiltonian systems. Two numerical examples

are given to illustrate this theory.

In future work, we will look how to use the rank
one perturbation of Hamiltonian system with periodic
coefficients to analyze the behavior of their multipli-

ers and also how this theory can analyze their strong

stability ?
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